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COMPUTING RAY CLASS GROUPS, CONDUCTORS 
AND DISCRIMINANTS 

H. COHEN, F. DIAZ Y DIAZ, AND M. OLIVIER 

ABSTRACT. We use the algorithmic computation of exact sequences of Abelian 
groups to compute the complete structure of (ZK/m)* for an ideal m of a 
number field K, as well as ray class groups of number fields, and conductors 
and discriminants of the corresponding Abelian extensions. As an application 
we give several number fields with discriminants less than previously known 
ones. 

The paper is divided as follows. In ?1, we give a complete algorithm for com- 
puting the groups (ZK/m)* for a number field K and an arbitrary modulus m. In 
?2, we describe the tools necessary for the determination of the ray class group of a 
number field, and also for solving the corresponding principal ideal problem. In ?3, 
we explain how to compute signatures, conductors and discriminants of the fields 
associated to subgroups of the ray class group by global class field theory. In prin- 
ciple we can give relative and absolute discriminants of all Abelian extensions of a 
given base field. Finally in ?4, we give some numerical examples obtained by these 
methods. In particular, we obtain in this way 10 totally complex number fields of 
degree less than 80 whose discriminants are less than previously known ones. 

Using Kummer theory (see e.g. [Da-Po]), we can also obtain a defining equation 
for these number fields, and we have done this for 9 of the 10 new fields that we 
have found. 

We refer to [Ca-Fr] for notation, definitions and results on global class field 
theory. 

1. COMPUTING THE STRUCTURE OF (ZK/m)* 

Let K be a number field, and m a modulus in K, in other words m = mom,, is 
a (formal) product of an integral ideal of K and a subset of the set of real places 
of K. We denote by ZK the ring of integers of K. 

In this section, we explain how to compute the group (ZK/m)* = (ZK/mO)* x 

IFm. The theoretical answer to this question is in principle solved in [Nak]. How- 
ever this is not suited to algorithmic purposes, and in addition is much more com- 
plicated than the solution we present below. 

The natural map from the set of elements of ZK coprime to m to (ZK/m)* is 
surjective. Thus, we could represent an element of this set as the class of an element 
Of ZK (the so-called one-element representation). However we prefer the following 
representation which is computationally simpler. 
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If m = mom,, we represent an element in (ZK/m)* as a pair (a, v) where ae 
(ZK/mo)* and v E Fm- considered as a column vector. Note that even when m 
is an ideal (i.e. m,, is empty), we still consider pairs (a,v) where v is the unique 
vector in 0-dimensional space over F2. If (a, v) E (ZK/m)*, we will say that a is 
the finite part, and v the infinite part or the Archimedean part. The group law in 
(ZK/m)* corresponds to multiplying the finite parts and adding the infinite parts. 
In all the algorithms that we will present, the above representation is sufficient and 
simpler than the one-element representation. In some cases, however, it may be 
desirable to find such a representation. To obtain it, one can do the following: Let 
m = mom,, be a modulus and (a, v) a pair representing an element of (ZK/m)*, 
with v = (vj)jEm. and call s the sign homomorphism from ZK to F2?? Compute 
a Z-basis -yl, ... -yn of the ideal mo. Considering small linear combinations of the 
-yi, find k elements /31, ... ,!3k such that the matrix A over F2 whose columns are 
the s(,B) is invertible. Set w = A-lv, and let w = (wj). A suitable element is 

/ = a 171 /. 
jEm". 
Wj =AO 

Since the final 3 may be large, we may want to reduce it. This cannot be done 
too rashly however, since we must now preserve the signature of 3. We will discuss 
this at the end of ?2. 

To compute the structure of (ZK/M)*, we start by the following lemma, whose 
non-algorithmic version is trivial. 

Lemma 1.1. Let a and c be two coprime integral ideals of K. 
(1) We can algorithmically find elements a E a and c E c such that a + c - 1. 
(2) Set b = ac. We have a split exact sequence 

1 - (ZK/a)* ) (ZK/b)* (ZK/C) * 1 

where #(a) = ca + a, 0(X5) = and a section a of q is given by a(-y) 
a-y + c. (Here denotes the classes in the respective groups, but using the 
same notation for each will not lead to any confusion as long as we know in 
which group we are working.) 

Proof. (1) By assumption, we have a + c = ZK. Thus there exist a c a and c E c 
such that a + c = 1. The algorithm to find them is explained in [Coh2]. For 
completeness we sketch it here. Let A (resp. C) be the Hermite normal form of 
a and c with respect to some fixed integral basis of ZKK. We assume (it is easy 
to reduce to this case) that the first element of the integral basis is 1. We apply 
the Hermite normal form algorithm to the matrix (A C), where here and later, 
(AIC) denotes the (horizontal) concatenation of the matrices A and C. If U is a 
unimodular matrix obtained during the HNF, we have (AIC)U = (OI) where I 
is the d x d identity matrix (where d = [K Q]) since a and c are coprime. Let 
Xi (resp. X2) be the top (resp. bottom) half of the (d + I)st column of U. Then 
AX1 and CX2 represent, with respect to the fixed integral basis, elements a and c 
satisfying the required conditions. 

The proof of (2) is straightforward and tedious, and left to the reader. F] 

Remark. More generally, if a and c are two coprime moduli (i.e. ao + co = ZK and 
aoc n coo = 0) there exist elements a and c such that a + c = 1, a -1 (mod *c), 
c_ 1 (mod *a). There is also an exact sequence generalizing (2). 
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A finitely generated Abelian group 9 will be represented by generators and re- 
lations, i.e. as a pair (G, DG) where G is a (finite) set of generators of G given as 
a row vector, and DG is a matrix representing a set of relations for G in Smith 
Normal Form. Since the Abelian groups that we will use are multiplicative, it is to 
be understood that a product such as GX (where X is a column vector of integers) 
is to be interpreted in a multiplicative sense, i.e. if G = (gi) and X = (xi), then 
GX = gXi 

Thus, let (A, DA) (resp. (C, DC)) be the Smith Normal Form of (ZK/a)* (resp. 
(ZK/C)*). By Lemma 1.1, it is clear that to obtain the structure of (2K/b)* we 
can simply construct a diagonal matrix using DA and DC as diagonal blocks, and 
then transform this matrix into its Smith Normal Form. 

More generally, we will need to perform algorithmically standard operations on 
Abelian groups such as computing kernels, images, quotients and extensions. Since 
it is not easy to find explicit descriptions of these algorithms in the literature, and 
since some details are not completely trivial, we give some explanations for the 
most important case of group extensions (see [Co-Di-Ol] for complete details). 

Let A = (A, DA) and C = (C, DC) be given in SNF. We assume that we can solve 
the discrete logarithm problem in A and C, in other words, that we can express an 
arbitrary element of the groups as a power product of its generators. 

Now assume that we have an exact sequence 

1 A B C - 1, 

and we want to compute the SNF (B, DB) of the group B. This is done using the 
following proposition. 

Proposition 1.2. With the above notation, let B' be such that O(B') = C, set 
S = (B'1b(A)). 

(1) There exists a matrix P with integer coefficients such that B'Dc = 4(A)P. 
(2) Set 

DC0 M -P DA, 

Then (S,M) is a system of generators and relations for the group B, and hence 
we can obtain the SNF (B, DB) of the group B by applying the Smith normal 
form algorithm to (S, M). 

Proof. Since q is surjective, we can find B' such that 4(B') = C. Let X E B. 
We can write 0(p) = CX = q(B')X = q(B'X), hence / - B'X E Ker(q) so 
3-B'X = O(AY) for some integer vector Y. Thus 3 = B'X+- (A)Y = (B'j0(A))R 

where R = (X) is the vertical concatenation of the column vectors X and Y. It 
follows that S = (B'10(A)) forms a generating set for B. 

Let us find the relations between these generators. If R= (X) is such a relation, 
we have B'X + 4'(A)Y = 1. If we apply q to this relation, we obtain q(B')X 
CX = 1, hence X E ImDC, i.e. X = DCX1. Thus we have B'Dckj + b(A)Y = 1. 

Set B" = B'Dc. Then q(B") = q(B')Dc = CDC = 1. Thus the entries of B" 
are in Ker(q) = Im(o), hence since we can solve the discrete logarithm problem in 
A we can find a matrix P such that B" = O(AP) = O(A)P. 
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So finally, the equation for our relation is 

O(A)PXi + O(A)Y = 1 + (A)(PXi + Y) =1 PX + Y C Im DA 

PX, + Y = DAT for some integer vector T. 

In other words, R is a relation if and only if we have 

R=M (X1T) with M=(-P DA) 

for some integer vectors Xi and T. Thus (S, M) is a system of generators and 
relations for B. Applying the SNF algorithm to (S, M) we obtain two unimodular 
matrices U and V and the SNF (B, DB) of the group B such that DB= UMV and 
B = SU-1. This finishes the proof of the proposition. E 

To solve the discrete logarithm problem in B is easy. Let 3 E B. Using the 
solution to the discrete logarithm in C we can find X such that +(p) = CX = 

q(B')X, hence q(3 - B'X) = 1 so 3 - B'X C lm(,O), and using the solution 
to the discrete logarithm problem in A we obtain 3 - B'X = (A)Y for some 

so 3 = (B'IO(A))(X). Finally, if U is the unimodular matrix obtained in the 
SNF algorithm above, this gives 3 BU(X); hence U(X) is our desired discrete 
logarithm. 

We can now explain how to compute the structure of (ZK/a)* for an ideal a. By 
Lemma 1.1, it is enough to compute (ZK/pk)* for a prime ideal p and a positive 
integer k, and we now consider this problem. 

Definition and Proposition 1.3. Let a and b be (nonzero) ideals. Assume that 
a I b I ak for some positive integer k. We denote by (1 + a)/(l + b) the quotient 
set of 1 + a by the equivalence relation TZ defined by (1 + x)Th(1 + y) - x _ y 
(mod b). Then multiplication in K induces a multiplzcation in (1 + a)/(1 + b) which 
makes this set into an Abelian group. 

Proof. It is clear that Th is an equivalence relation. Since a is an ideal, 1 + a is stable 
by multiplication, and since b is an ideal, Th is compatible with multiplication. Thus 
(1 + a)/(l + b) has a natural commutative multiplication and the class of 1 is the 
unit element. We only need to show that any element has an inverse. But if x E a, 
then by assumption x k C b. It follows that for any x c a we have 

(1+ x) (1 + Z:(l)iXi) 1 + (_l)klXk 

hence, if we set y = 1 -1k(_j)iXi, then y E a and (1 + x)(1 + y) - 1 C b so the 
class of 1 + y is an inverse of the class of 1 + x. Thus (1 + a)/(1 + b) is in a natural 
way an Abelian group. 

Note that it is not difficult to prove that this group is also finite. This will in 
fact follow from the results proven in the rest of this section. E] 

Proposition 1.4. Let p be a prime ideal of degree f, and let q = pf ZK/ P Set 
G = (ZK/pk)*. Let 

W = {x c GI xq-l1} and Gp = (1 + p)/(1 + pk). 

Then 
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(1) W ( (ZK/P)*, and in particular W is a cyclic subgroup of order q - 1 of G. 
More precisely, if 9o is a Mgenerator of (7K/P)*, then [log2(k)] iterations of 
g -g - - _)/((q - 1)9q-2) mod pk applied to go gives a generator of 
W. 

(2) Gp is a p-subgroup of G of order qkl 

(3) G = W x Gp. 

We leave the (easy) proof to the reader. 
Finding a generator g0 of the finite field (2K/P)* is easily done if q - 1 is com- 

pletely factored, simply by trying random elements. Since the probability of finding 
a generator is q$(q - 1)/(q - 1) (where 0 is Euler's function), this is close enough to 
1 in general, so go will be found rapidly. 

On the other hand, the converse problem which we also need to solve, of com- 
puting discrete logarithms in (ZK/P)*, is a famous difficult problem for which there 
exists a vast literature. Note, however, that in the context of number fields, q will 
not be too large in general, hence rather simple-minded techniques such as Shanks's 
baby-step giant-step method can be used. However, if we deal with inert primes 
of the order of a few thousands in number fields of degree 20 (this is a reasonable 
proposition with today's capabilities), then q will have of the order of 70 decimal 
digits, and the problem starts to become extremely difficult. In this paper, we 
assume that we deal with numbers of reasonable size. 

Once 9o is found, doing the Hensel iterations explained in Proposition 1.4 (1) is 
easy. Similarly, once one knows how to compute discrete logarithms in (ZK/P)*, 
lifting them to W is also easy. In fact, as we will see we do not even need to perform 
these Hensel liftings. 

So the task that remains before us is the computation of the group Gp = 

(1 + p)/(1 + pk). 
An idea that immediately comes to mind is the use of p-adic logarithms. When 

the ramification index e of p is not too large (more precisely when e < p - 1), then 
the p-adic logarithm series induces an explicit isomorphism between G, and the 
additive group p/pk, and computing this last group is straightforward. Although 
simple, this method cannot be applied in all cases, hence we prefer to use the more 
complicated but general method based on the following ideas. 

Proposition 1.5. (1) Let a < b < c be integers. We have the exact sequence 

1 - (l+ p)/(l+PC) (1 + pa)/(l + pc) (I + pa)/(l + pb) *1I 

(2) Assume that b < 2a. Then the map from the multiplicative group 
(1 + pa)/(l + pb) to the additive group pa/pb which sends the class of 1 + x 
modulo 1 + pb to the class of x modulo pb is well defined and is a group 
isomorphism. 

Proof. Trivial and left to the reader. Note that in (2) the condition b < 2a is only 
needed for the map to be a group homomorphism, otherwise the map is always well 
defined and is a bijection between the two sets. D 

Using this proposition and Proposition 1.2, we will compute successively 

(1 + p)/(1 + p2), (1 + p)/(1 + p4), and finally Gp = (1 + p)/(1 + pk). 
Thus, the principal steps in the computation of the group Gp are the following: 
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Step 1. Computation of (1 + pa)/(l + pb) for a < b < 2a. Using Proposition 
1.5 (2), we only need to compute pa/pb and the simplest way is probably as follows. 
Let p = PZK + FZZK be a two-element representation of p, where we may assume Xr 
chosen so that vp (ir) = 1 (if this is not the case, then vp (p) = 1, i.e. p is unramified, 
and hence we replace Xr by Xr + p). 

Then for all m, if q = [m/e] = L(m + e - 1)/ej where e = e(p/p) is the 
ramification index of p, we have pm = Pq2K + qrmzK. Indeed, for any prime ideal 
q different from p, min(vq(p),vqi(r)) = 0, hence Vq(pqZK + Tm2K) = 0, while 
vP (pq2K + 7F?2K) = min(qv, (p), mv (Xr)) = min(qe, m) = m. 

From this, it is easy to compute the Hermite normal form of pm on some fixed 
integral basis of ZK: construct the n x 2n matrix obtained by concatenating pq times 
the identity matrix with the n x n matrix giving the endomorphism multiplication 
by 7rm on the integral basis, and then apply a Hermite normal form algorithm to 
obtain the desired HNF. 

Let A and B be the HNF matrices of pa and pb obtained as above. The columns 
of A (resp. B) give on the chosen integral basis a 2-basis (as) of the ideal pa 

(resp. (pi) of pb). Since a < b, we have pb C pa, hence the matrix A-1B which 
expresses the /3i in terms of the ai has integer coefficients. If we apply the Smith 
normal form algorithm to this matrix, we will find unimodular matrices U and 
V such that UA-1BV = Dc is a diagonal matrix in Smith normal form. If (ci) 
are the diagonal entries of Dc and if we set C = AU-1, then the columns of C 
give the coordinates on the chosen integral basis of elements Y E pa, and we have 
pa/pb G= (/ciZ/C)-yi, where y denotes the class of ay modulo pb* Because we also 
have b < 2a, it follows from Proposition 1.5 (2) that 

(1 + pa)/(l + pb) = e(Z/Ci_)(1 + Vi) 

The matrix Ua = UA-1 is now used to solve the discrete logarithm problem in 
this group. Indeed, since a < 2b, Proposition 1.5 tells us that 

fJ(l (+ )a 1 i) i EXiai (mod 1 + p) 

Hence if / E (1 + pa)/(1 + rb), we want to solve Ex iya,i = -1, or in matrix 
terms on the integral basis, AU-1X B - IK, where B is the column vector 
representing :3 on the integral basis, and 1K is the column vector representing 1 
(i.e. (1, 0, ... , 0)t since we choose an integral basis starting with 1). It follows that 
X = UA-1(B - 1K) = Ua(B - IK) is the desired discrete logarithm. 

Step 2. Computation of (2K/pk)*. Let k be a positive integer. To compute 
integers di and elements 6. of ZK such that (2K/pk)* = (2/di2)6i with di+, I di, 
we use Step 1 to compute (1 + p)/(1 + p2)) (1 + p2)/(1 + p4)... (1 + p2 )/(1 + 
p2m), (1 + p2m)/(1 + pk), where m = 1log2(k - 1)j. Then using inductively 
Proposition 1.5 (1) and Proposition 1.2, we obtain successively the structure of 

(I + p)(l p) ) (I + p) /(l1 + p4) I .. *( * ( 1 + 1:w 2/',G (1 + p2/n ) k) 

Using Proposition 1.4, this gives the structure of (2K/Pk)* and also allows us to 
solve the discrete logarithm problem in (2K/Pk)*. 

Step 3. Computation of (2K/m)*. Using Lemma 1.1 recursively on the prime 
ideal factorization mo = flp jP',(m0), we obtain the structure of (2K/mo)*, and 
hence of (2K/m)* = (ZK/mO)* x F- 
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This concludes the sketch of the algorithm for computing the structure of 
(7LK/m)*. 

It will also be useful t6 compute discrete logarithms for elements of K* coprime 
to m which are not necessarily in ZK. For this, we do the following: Let a be a given 
nonzero integral ideal and an element /3 of K* coprime to a. We assume /3 given by 
its components on an integral basis of K and let d be the lowest common multiple 
of the denominators of the components of /3. We assume that d > 1, otherwise 
3 cE ZK and it suffices to use the usual discrete logarithm. Then let a = Pkp 

be the prime ideal decomposition of a. Denote by e(p) the ramification index of p. 
Compute k (- supp Lvp (d)e(p)/kpj + 1, where vp (d) denotes the ordinary exponent 
of p in d, where p is the prime number below p. Using standard ideal operations 
(cf. [Coh2]), compute the ideal D = d7K + ak and the inverse ideal D-1. Because 
dD-1 and aD-1 are coprime integral ideals, we use Lemma 1.1 to compute a and c 
such that a c dD-1, c C a-1 and a + c = 1. Then a and a/3 are coprime to a. Now 
we can compute discrete logarithms for a and af3 and deduce the discrete logarithm 
of /3. 

2. COMPUTING RAY CLASS GROUPS 

Let m be a modulus. Recall the exact sequence 

U(K) > (2K/m)* O Cln > Cl(K) 1, 

where U(K) denotes the unit group of K, Cl(K) the ordinary class group of K, 
and Clm = I'/Pm the ray class group corresponding to the modulus m, i.e. the 
quotient of the group Im of nonzero fractional ideals of K coprime to m by the 
subgroup Pm of principal fractional ideals generated by an element a congruent to 
1 mod *m. As before, the groups Cl(K) and U(K) must be known by a system of 
generators and their matrix of relations in SNF. This can be done using either the 
techniques of [Po-Za] or of [Coh]. Note that [Coh] assumes the GRH, but in fact 
in practical situations it is rather easy to remove the GRH condition by certifying 
the result unconditionally. We refer to [Zan] and [Di-Ol] for details. Note also that 
we need to solve the discrete logarithm problem in Cl(K) (in U(K) the problem is 
ordinary linear algebra). The solution to this is also given in [Coh], where in fact 
even more information is obtained as part of the principal ideal problem: if an ideal 
is principal, the algorithm also gives a generator. More precisely, if gi are ideals 
such that gi are the given generators of Cl(K), then if g is an ideal of K, we can 
find (vi) such that g = g. i, but the same algorithm gives also a c K such that 
g = a fl gv>. We will also do this in the context of ray class groups. 

The group (2K/m)* has been extensively dealt with in ?1. 
Two remarks on the maps in the above exact sequence above. First, let /' be 

the map from (2K/m)* to Clm. If g E ClO is known to be of the form b(a), we 
can find a C 2K because in that case g is an ideal of K coprime to m which is a 
principal ideal in the ordinary sense. Thus, by using the solution to the principal 
ideal problem mentioned above, we can algorithmically find a such that g = a2K, 

and a will be coprime to m. Using the method described at the end of ?1 we can 
find 3 and ay such that a = 1/-y with 3 and ay integral and coprime to m, hence we 
can take a =/3y in (Z/K/m)*. 
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Second, let 0 be the map from Clin to Cl(K). Then, if g E Cl(K) = lm(q), 
we can find an ideal g' coprime to m such that q(g') = g. This follows from the 
following lemma, whose theoretical version is well known. 

Lemma 2.1. Given a fractional ideal g of K and a modulus m, we can algorith- 
mically find a c K* such that ag is an integral ideal coprime to m. 

We refer to [Coh2] for one method of doing this using the approximation theorem 
in Dedekind domains, but also mention that a generalization of the factor refinement 
method is better (cf. [B-D-S]). 

We now sketch the computation of the ray class group Clm in the usual form 
Clm = (B, DB) where B is a vector of ideal classes bi generating Clm (these classes 
are represented by ideals bi, coprime to m). 

We assume already computed U(K) = (E, DE) with E - (ei), Cl(K) = (C, DC) 
with C (tYi) (g.) (by [Po-Za] or [Coh]) and (7K/M)* (Z, Dz) with Z = ((). 
We denote by , the map from (ZK/m)* to Clm. 

Using the approximation theorem or factor refinement, for each i compute a! Ec 
K* such that g' = a'g. is an integral ideal coprime to m. Let G' be the row vector 
of the g", and A' the row vector of the a'. The vector A' will be used later to solve 
the principal ideal problem in ray class groups. 

For each ideal gi, compute g" (where c. is the i-th diagonal entry of DC), and 
using the solution to the principal ideal problem (see [Coh]), find a?i c K such 
that g" = ai2K. Here the a"'Ci a are elements of ZK coprime to m. Compute 
the matrix P whose columns are the discrete logarithms of the a"'Ci a with respect 
to the (i and the matrix Q whose columns are the discrete logarithms of the ci 

with respect to the (i. Let B' = (G' Vb(Z)) and H =(_P Q D). The 

reduction of the system of generators and relations (B', H), gives (B, DB) the SNF 
of Clm, unimodular transformation matrices U and V such that DB = UHV and 
B = B'U-1, and thus the structure of Clm. 

For the corresponding discrete logarithm problem, as in the case of Cl(K) itself, 
we will in fact solve a stronger problem, the principal ideal problem in ray class 
groups. Given a fractional ideal h coprime to m, we compute a solution to the 
principal ideal problem in Cl(K), in other words we find a column vector W and 
ty C K such that h = yGW (where G is the row vector of the ideals gi whose 
classes are the given generators of Cl(K)). Set a = y/A'W (a will be coprime to 
m). Using the discrete logarithm algorithm in (2K/M)*, we compute Y such that 
a -ZY (mod *m), and let a' ZY as an element of (2K/M)*. 

Let R = (W), the vertical concatenation of the the column vectors W and Y. If 
U is the unimodular matrix considered above, L = UR is the vector of exponents of 
the class represented by h in Clm and the element 13 = a/a' is such that h = 3HL 
and 3 _ I (mod *m). 

This finally terminates the algorithmic computation of the ray class group Clm 
and of the corresponding discrete logarithm problem. 

It should be emphasized that the main bottlenecks will be in two places. First, 
in the computation of discrete logarithms in (2K/P)*. For this, considering the 
vast amount of effort which has been spent on the problem, we have nothing more 
to say. 

The second bottleneck will be the size of the generators. Indeed, several times 
we have to multiply a given set of generators by a unimodular matrix, or multiply 
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generators by elements to make them coprime to certain ideals. All this makes the 
coefficients of the generators grow in size. Since this can rapidly make the algo- 
rithms completely useless in practice, we should like to give a few brief indications 
on how to get down to generators of manageable size. 

The main place where size reduction is necessary is in the SNF algorithm for 
Abelian groups. In that algorithm, a set of generators and relations (G, M) is 
given, and after reducing M to its HNF, which is a harmless process, we use the 
SNF algorithm to compute unimodular matrices U and V such that H = UDV 
(and afterwards we remove trivial components). The main problem comes from the 
fact that the new generators are given essentially by GU-1, and these may be large 
objects if U-1 has large coefficients. 

There are several complementary ways to improve this situation, and all should 
be applied. 

(1) The matrix U-1 is not unique in general, hence it is worthwhile to find a 
small such matrix. This can be done using the techniques of [Ha-Ma]. 

However, in most cases, this just cannot be done, and all possible matrices U- 
have large coefficients. 

(2) Another idea is to observe that GM = 1 in the Abelian group, hence if we 
add to the columns of U1 any 2-linear combination of the columns of M (or of 
H), the resulting generators GU1 are unchanged. For doing this reduction, the 
simplest is probably as follows. Let X be a column vector that we want to reduce 
modulo the columns of H. Compute first the matrix L obtained from H by applying 
the LLL algorithm to the columns of H. Then replace X by X - LL-LX1, where 
[A] denotes the result of rounding each entry of a matrix to the nearest integer. 
This should now be rather small. 

(3) We should try to avoid divisions as much as possible. For this, instead of 
computing a product of the form H g'i in the naive way, we write 

flgQi i = 7I gi/ II g-ui 

i i, ui>o i, ui<o 

so that we need to perform only one division. Note that division is in general an 
expensive operation. 

(4) In the (very frequent) case where the group consists of classes of elements of 
a set modulo some equivalence relation, the elements of the group are usually given 
by the classes of some representatives, but the latter should be chosen with care. 
In other words, one should try to reduce modulo the equivalence relation as much 
as possible. 

Let us look in detail at the two cases of importance to us, that of (7K/m)* and 
that of Ol. 

(4.1) Recall that elements of (2K/m)* are represented by pairs (a, v) with a E 

ZK coprime to mo and v c F'-. To reduce such a pair, we consider a represented 
by a column vector X on a fixed integral basis. As in (2), we compute an LLL- 
reduced basis L of the ideal mo, and set Y (- X - LL-LX1. This will be a 
reasonably small vector giving an element 13 congruent to a modulo mo. We can 
then replace (a, v) by (p, v). This is where the two-element representation is the 
most useful since we do not have to worry about the signature of /3. 

(4.2) To reduce an ideal modulo m (so that we stay in the same ideal class in 
Clin), we proceed as follows. First, exactly as in the case of (2K/IM)*, instead of 
representing ideal classes as such, i.e. as classes of ideals coprime to mo modulo 
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Pm, we will represent them as pairs (a, v) where a C In, is an ideal coprime to mo 
and v C F` as usual. The equivalence relation 1? on these pairs is defined by 
(a', v')R.(a, v) if and only if there exists 3 _ 1 (mod *mo) such that v' = v + s(i3). 
As in the case of (2K/M)* this representation will avoid annoying problems due to 
signatures. 

3. COMPUTATIONS IN GLOBAL CLASS FIELD THEORY 

3.1. Algorithmic description of congruence groups. Congruence groups are 
subgroups of Im containing Pm. They naturally correspond to subgroups of Clm. 
We assume that Clm has been computed, so that as usual 

n 
Cli = O(2/ci>)ti 

i=l1 

We have the following result. 

Proposition 3.1. Let ci and -yi be as above, let Dc be the diagonal matrix of 
the ci, and C the row matrix of the yi. There is a one to one correspondence 
between congruence groups modulo m and integral matrices A in Hermite normal 
form satisfying A`Dc c MAn(Z). The correspondence is as follows. 

(1) If A is such a matrix, we set C' = CA in the multiplicative sense already 
used in the preceding sections. Then if C' = (-y), the congruence subgroup H 
associated to A is the subgroup of Im generated by the -Y' and by Pm 

(2) Conversely, if H is a congruence subgroup, let (,y)D<i<m be a system of gener- 
ators of H/Pm, and let C' be the row vector of the -yi. We can write C' = CP 
for an n x m matrix P. Then A is the Hermite normal form of the matrix 
(P IDC). 

(3) Let A be a matrix in HNF, and let H be the corresponding congruence group. 
Then I H/Pm O = I Cn I / det (A) or equivalently, if H = H/Pm, then 

hm,H = lClm/Hl = lIm/Hl = det(A) . 

Proof. We have Clm - En/A, where A is the lattice A = cjZ, so that a 2- 
basis of A is (Ci6i)1<i<n, where the ci are the canonical basis elements of En. 
The isomorphism is given explicitly by sending the i-th generator -yi of Clm on ci. 
Subgroups of En/A are of the form A'/A, where A' is a lattice such that A c A' c 

En. Such a lattice A' can be defined in a unique way by a matrix A in Hermite 
normal form so that the columns of this matrix express a 2-basis of A' on the 
ci. The condition A' C En means that A has integer entries, and the condition 
A C A' means that A`Dc also has integer entries, since it is the matrix which 
expresses the given basis of A in terms of that of A'. In terms of generators, this 
correspondence translates into the equality C' = CA of (1). 

For (2), we remark that CDC = 1, hence if C" = C(PlDc) we have simply 
added some l's to the generators of H/Pm. Thus, the group can be defined by the 
matrix of maximal rank (PlDc), hence also by the Hermite normal form A of this 
matrix. 

For (3), we know that A`Dc expresses a basis of A in terms of a basis of A', 
hence 

IH/Pml = IA'/Al = det(A-1Dc) = lClm /det(A). M 
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Thus, finding all congruence groups modulo m is equivalent to finding integral 
HNF matrices A such that A`1Dc also has integer entries. There exist only a 
finite number of such matrices A, in fact exactly the number of subgroups of Clm 
or equivalently of G(Z/c.2). It is natural to call these matrices the left divisors of 
the matrix Dc. 

The question of finding these divisors in an efficient manner does not seem to be 
easy. However, by the Cohen-Lenstra heuristics generalized to this case, it seems 
reasonable to assume that Clm will often be cyclic or close to cyclic. Hence, we can 
proceed as follows. Let n be the number of cyclic components of Clm as above. 

If n = 1, A divides Dc if and only if A = (el) where e1 I cl and e1 > 1, hence 
we simply look at all (positive) divisors of c1. 

If n = 2, then an immediate computation shows that A e( fl) divides 

Dc if and only if for i = 1 and i = 2, ei is a positive divisor of ci, and fi 
kei/gcd(el,c2/e2) with 0 < k < gcd(el,c2/e2). 

If n = 3, we can write an explicit but much more complicated recipe for the 
coefficients of A, but for general n, it does not seem to be possible. Thus for n > 3, 
there does not seem to be any better solution than to try all possible HNF matrices 
A = (a ,j) with ai,i I c and 

a , 0+l _ O (mod ai, gcd (ai, , ci+l /ai+,,i+)), 

which are easily seen to be necessary conditions. 
Finally, we consider the question of computing the image of a subgroup of Clin by 

a surjective group homomorphism. The following proposition, given in an abstract 
situation which does not necessarily refer to ray class groups, answers this question 
immediately. 

Proposition 3.2. Let B = (B, DB) and C = (C, Dc) be two finite Abelian groups 
written in Smith normal form, let q be a group homomorphism from B to C, let H 
be a subgroup of B defined by an HNF matrix AB dividing DB, and finally, let P be 
a matrix such that /I(B) = CP computed using the solution to the discrete logarithm 
problem in C. Then the Hermite normal form AC of the matrix (PAB DC) divides 
DC and defines the subgroup +(H) of C. 

Proof. The generators of H are by definition the entries of BAB. Hence the gen- 
erators of +(H) are the entries of O(B)AB= CPAB. Since CDc = 1, it follows 
that the entries of C(PABIDc) also generate +(H). But the advantage of this last 
matrix is that it is of maximal rank (since Dc is), hence if AC is its HNF, then 
CAC generates +(H) and Ac is an integral matrix in HNF. Furthermore, since 
it is obtained as the "matrix GCD" of PAB and DC, it divides DC. Explicitly, 
let U be the unimodular matrix such that (PAB Dc)U = (OAc). Write in block 

matrix form, U-1 =(Ul U2) Then (PABIDc) = (OIAc)U-1 from which it 

follows in particular that AcU4 Dc, hence A-'Dc = U4 has indeed integral 
coefficients. 0 

3.2. Computing discriminants, signatures and conductors. Let us now 
come back to the ray class field situation. Let K be a number field (our base field), 
let m be a modulus, Clm the ray class group, and N the ray class field corresponding 
to Clin. In particular, we have Gal(N/K) Clm. 
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For any congruence group H modulo m, denote by H H/Pm the subgroup of 
Clm corresponding to H. We will often identify H and H. 

By Galois theory, subfields L of N are in one to one correspondence with con- 
gruence groups H modulo m by the maps H X ) L = NH and L X ) Gal(N/L). We 
also have Gal(L/K) O Clm/H. 

Our goal in this section is to compute the signature, relative discriminant and 
conductor of these subfields L. The result is as follows. 

Theorem 3.3. Set n = [K: Q], let (rl, r2) be the signature of K, so that ri+2r2 
n, and let dK/Q be its discriminant. For any modulus n dividing m, denote by Sn 

the canonical surjection from Clm to Cln, and set 

hn,H = JCln1Sn(H)j 

Let m H ei p m, be the prime decomposition of m. 
Then, if L is the extension of K corresponding to the congruence group (m, H), 

we have the following results. 

(1) Let 8L/K be the relative discriminant of L/K. Then: 

/K IIeChmjH-Z1<k<ei hm/pk ,H 

J-JKpi, 

(Recall also that we have |dL/Q =AVK/Q(6L/K) dK/Q )hmH 

(2) The modulus m is the conductor of L if and only if hm/p,H < hm,H for all 
p I m, including the places at infinity. 

(3) Let (R1, R2) be the signature of L, so that R1 + 2R2 = [L ] n hm,H- 
Then we have 

RI hm,H (rl - mco| + E 6(hm,H - hm/v,H)) 

where 5(x) = 1 if x = 0 and 6(x) 0 otherwise. 

Proof. For (1), we know that 

6LIK = |Y(X) 
x 

where X runs through all the characters of Clm/H and F(x) is the conductor of X. 
For each n I m, denote by f (n) the number of characters of Clm/H of conductor 

exactly equal to n. Then since the total number of characters is equal to the order 
of the group, we have the equation 

Z f (n) = lClm/Hl = hm,H 
nlm 

By Mobius inversion, it follows that 

f (n) = E t(m/n)hn,H 
nlm 

where bt(n) is defined as in the case of ordinary integers (all this is valid since a 
modulus can be written as a product of finite or infinite primes in essentially only 
one way). 



COMPUTING RAY CLASS GROUPS, CONDUCTORS AND DISCRIMINANTS 785 

Thus, we have 

6L/K 7J 11 F(X) = }7 nf(n) f=ZnIolnf/O)h H 
nlm.F(x)=n nilm nilm 

, \ ~~ho,H 

= II I I (cD)I(C) 
- J(PI(D)P2(D))h.H 

DIm c(m/0) / DIm 

where 

PI( ) = 1I C(c) and P2() 1171 01(c) 
cI(m/0) cI(m/0) 

The product P2(D) is trivial to compute: we have 

P2(O) = 0EcJ(m/ ) t[(c) 

and by definition of the ,u function, this exponent is equal to zero unless m/D 1. 
Hence P2(D) = 1 if a :A m, and p2(m) = m. 

The product P1 (a) can be treated as follows. Set L(c) = p if c = pk is a nontrivial 
prime power (finite or infinite), L(c) = 1 otherwise. Then FIc L(c) = n is a formal 
equality which only expresses the existence and uniqueness of the decomposition of 
n into prime powers. By multiplicative M6bius inversion, this gives 

L(n) = rj(n/c)t(c) = IInm(c)/J1/(c ) 
cln cjn cln 

By definition of ,u the numerator is equal to 1, hence we obtain the formula 

1 ct(c) = l/L(n) 
cln 

- The reader will certainly have recognized that the function L(n) is the ideal- 
theoretic analogue of the function eA(n) of elementary prime number theory. 

Replacing in our above formulas, we obtain that pi (o) = 1/L(m/0). Therefore, 

8L/K mhm,H flL(m/?)-hD,H = mhm,H 17 p- hmbpk,H 

'dIm pklm 

Jihm,H-Zl<k<e, hm/pkH 

thus proving (1). 
(2) is simply a restatement of the definition of the conductor of an Abelian 

extension. 
For (3), we note that R1 will be equal to [L: K] = hm,H times the number 

of real places of K unramified in L. By definition of the ray class group, the 
r- ImOo real places not in the modulus m must be unramified. Now let v c m,. 
If hm/v,H = hm,H, this means that v does not divide the conductor of L, hence 
that v is unramified in L. On the contrary, if hm/v,H < hm,H, then v divides the 
conductor of L hence v is ramified in L. This gives the formula in (3). O 

The explicit computation of relative or absolute discriminants, signatures and 
conductors, can be done using Proposition 3.2 and Theorem 3.3. To compute 
the conductor, we recall simply that we replace m inductively by m/p for some 
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(finite or infinite) place p dividing m, until there does not exist p I m such that 
hm/p,H = hm,H. 

3.3. Conductors of characters. The formulas given above (in particular in The- 
orem 3.3) have the great advantage that we do not need to compute the conductors 
of individual characters. In this subsection, we explain how to do this if these 
conductors are really needed. 

As before, let 

Clm(K) = @ (Z/Ci)Z-yi 
1<i<k 

be the SNF of Clm(K). Denote by (n the specific primitive n-th root of unity 
exp(2i7r/n) and let ( = (,, (recall that ci divides cl for all i). Then a character X 
is uniquely defined by a vector (a,, .. ., a) where ai C Z/ciZ so that 

X(]? -Xi) = ]I <aixi 
- 

( Ei(ci /ci)aixi 
"i ci 

By definition, the conductor of X is equal to the conductor of the congruence group 
H = Ker(X). Since this is a congruence group, we can use the above methods to 
compute its conductor. The only problem is to put this group into an algorithmic 
form, i.e. to compute the corresponding matrix A associated to H by Proposition 
3.1. 

We have X(I7i "Yi_x) = 1 if and only if there exists an integer y such that 

S(ci/ci)aixi + ClY = 0 
i 

This is an instance of the integer kernel problem (see [Coh, ?2.4.3]). In the present 
case, it is solved as follows. Set bi = (ci/ci)ai, and let B = [bl, ... , bk, C1] considered 
as a 1 row matrix. Using the Hermite normal form algorithm, we can compute a 
unimodular matrix U such that BU = [O,.. ., 0, d] for some d (equal to the GCD 
of the entries of B). Write in block matrix form 

E=( C) U (R a) 

where E is a k x k matrix (and C is a column matrix and R a row matrix). The 
column vectors X = (xi) such that there exists a y satisfying our equality above 
are then exactly the Z-linear combinations of the columns of the matrix E. But 
this means exactly that the kernel of X is defined by the matrix E, or if we want 
it in normalized form, by the HNF of E. We can then compute the conductor as 
usual. 

3.4. Computing defining equations. There seems to be two ways to compute 
the defining equations of the number fields L defined by a congruence group (m, H). 
One is by Kummer theory. We refer to work of Pohst and collaborators ([Da-Po]) 
for details on this. The other method, which works only in certain cases, is the use 
of Stark units (see for example [Rob]). This is the subject of active research. 

In this section, we would like to mention the main results which are used in this 
application of Kummer theory, and specialize to the case of quadratic and cubic 
extensions. 
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Let K be a fixed base field. In ?3.2, we are given a congruence group (i, H), 
and we compute the relative discriminant and signature of the class field L corre- 
sponding to this congruence group. We may of course assume that m is the exact 
conductor of this field (otherwise we can easily reduce to this case). Our goal is to 
give a defining equation for L/K, here using Kummer theory. 

Let us review what we know about the field L. We know its degree (equal to 
hm,H), its relative discriminant 8L/K, and its signature. We also know exactly the 
finite and infinite primes of K which ramify in L, i.e. the prime divisors of m. In 
fact, the exponents of these primes in m give more information. We of course know 
that L/K is an Abelian extension with Galois group isomorphic to Clm/H. 

We recall the following simple result, which is the beginning of Kummer theory. 

Proposition 3.4. Let K be a number field and L/K be a cyclic extension of degree 
p. There exists a C K such that L is a subfield of degree p of the Abelian extension 
N = K((p, a), where (p is a primitive p-th root of unity. 

If (p E K (for example when p = 2), then we have L = N and the only problem 
to solve is to find a. When (p , K, we must find a and also find L afterwards. 

Assume first that (p C K. Then L = K( a). The discriminant of the polyno- 
mial xP - a is equal to ?pPaP-1, hence the only possible ramified prime ideals are 
those which divide p and those which divide a. 

The following theorem gives the main result that we will need. 

Theorem 3.5. Let p be a prime such that (p C K and let L = K(6). 

(1) If q is a prime ideal not dividing p, then q is unramified in L/K if and only 
if vq (a) =0 (mod p). If q is ramified, then Vq (6L/K) = p - 1. 

(2) If p is a prime ideal dividing p, assume that p t a. Set a = vp(I - (p) 
e(p/p)/(p - 1). Then p is unramified in L/K if and only if the congruence 

xP-a (mod pap) 

has a solution in K. 
(3) More precisely, if the congruence above has a solution, but the congruence 

mod pap+l does not, then p stays inert, otherwise p is totally split. 

For a proof, see for example [Hec], Theorem 119. 
We will make the following simplifying assumptions. First, we assume that 

hm,H= p is prime. Then the ramified primes in L/K (i.e. the prime divisors of 
m) are totally ramified. Second, we assume that p is coprime to m, i.e. m is not 
divisible by any prime ideal of K above p. 

To choose a, we first look at prime ideals dividing m, hence not dividing p by 
assumption. For each such prime ideal, we want vq (a) g 0 (mod p). On the other 
hand, for any other prime ideal, we want vq (a) 0 (mod p). In many cases (but 
not all), we can even assume that vq(a) = 0 for these other prime ideals. Assume 
a thus chosen (there is of course an infinite number of choices). Multiplying a by 
a unit does not change the above conditions, and we will now use this freedom to 
deal with the primes above p. 

Assume p I p, so that in particular p t a and p t m. Thus p must be unramified, 
and by Theorem 3.5 (2), this is equivalent to the congruence xP =-'a (mod pap) 

having a solution, and this must be true for all p I p. So if c = FJpIp p, the necessary 
and sufficient conditions boil down to the solvability of the single congruence 

x =a (mod raP) 
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Let ao be obtained so that the local conditions at the primes q not dividing p 
are satisfied. We want to find a = aou such that u is a unit and the congruence 
xP _ gaou (mod caP) is satisfied. For this, we compute the structure of the group 
(ZK/CaP)* as well as the matrix H whose columns are the discrete logarithms of 
the (known) generating set 6o, ... ., for the units of K in (ZK/CaP)* . Let B be the 
column vector equal to the discrete logarithm of ao. Using Gaussian elimination 
and performing all computations modulo p (i.e. in the field 2/pZ), check whether 
the equation HX -B (mod p) has a solution or not. If it does not, a unit having 
the required properties does not exist. In the other case, let X = (xo... , xr) be 
a lift to Zr+l (with small coefficients) of a solution of HX -B (mod p). The 
searched unit is u H exj. 

To continue, we need the following proposition, which is a refinement of Propo- 
sition 3.4. 

Proposition 3.6. Assume that K contains the p-th roots of unity. Let g be a 
primitive root modulo p2, and assume that there exists an automorphism T of K 
extending the automorphism of Q((p) sending (p to (pg. Let L/K be a cyclic exten- 

sion of degree p. Then there exists 3 E K such that if a = Hla=o(TaQ))9P , we 
have L = K(6). 

Proof. Call u- a generator of the Galois group of L/K. By the normal basis theorem, 
we can find 0 E L such that L = K(0) and the vi(0) form a basis of L as a K-vector 
space. Set 

p-l 

aY = L -iCi(0 
i=o 

Since the ovi(0) are linearly independent over K, y is not equal to zero. 
We have o(y) = (p-y, from which it follows, as in Proposition 3.4, that 

-p (1)P XL/K AL ) E K 

Similarly, it is clear that 

0j(Ta)) 
p gT (a) 

We set 3 = -y9/T(-y). Then ov(3) = 3, hence by Galois theory we have E3 K. 
F'urthermore, an immediate calculation shows that 

p-2 

aE = IIJ(Ta (/) )9p-2-a = gp-1 - p 

a=0 

with 6 = y(gP'-1)/p. To show that:3 is as desired, we must show that L = K(6) or 
in other words, since [L: K] is prime, that 6 ? K. But since g is a primitive root 
modulo p2, (gP-1 - 1)/p # 0 (mod p), so since yP E K, if 6 E K we would have 
also -y E K. But since o(-y) = (pQy, we would then have -y = 0, which is absurd. 
This proves the proposition. O 

Corollary 3.7. Keep the notations of Proposition 3.6. Let 0 = Ca such that 
L = K(0). Then if we define 

T(0) = g/1'3(9P -1)/p 
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and extend r in a natural way to all of L, this gives an automorphism of L extending 
the automorphism Tr of K. In addition, we have for 0 < a < p - 2, 

a-1 

xTa(O) 9ga (Ti (gP-2+a-i _9a-i-1 )/p 

i=O 

Proof. Since OP = a, we must have r(O)P = 'r(a). Using the definition of a in terms 
of )3, we find that 

09P/T(O)P = 3gP- 1-1 

from which it follows that 

(ph= <k3(g-1)/p for some k 

We can choose k = 0 (the other choices will give the p different extensions of r to 
L), and we obtain the first formula of the corollary. The second is easily proved by 
induction. D 

Assume now that (p ? K. We set as before M = K((p) which is a cyclic 
extension of K of degree p - 1. The conditions on a are exactly the same as before, 
except of course that we must choose a E M and not in K. Thus, we may assume 
that N has been obtained. We now want to obtain L itself. 

Corollary 3.8. Keep the notations of Proposition 3.6 and Corollary 3.7, applied 
to the extension N/M instead of L/K. Set 

p-2 

A = Ta (0) 

a=O 

as defined in Corollary 3.7. Then L = K(A). 

Proof. We have A E N and T(A) = A, hence by Galois theory A E L. Since [L: K] 
is prime, to show that L = K(A) we need only to show that A ? K. Assume the 

contrary. Thus, S4p-2 Ta (0) = A E K. Recall that N, as the compositum of the two 

Abelian extensions L/K and M/K, is Abelian, hence T and u- commute. Applying 
vi to the above equality, and using v(0) = (pO and T((p) = (, we obtain for each i 

p-2 

(pg Ta(0)=A 

a=O 

Using these equalities only for 0 < i < p - 2, we thus obtain a system of p - 1 
equations in p -1 unknowns, whose determinant is that of the Vandermonde matrix 

ga. Since the <are distinct for 0 < a < p- 2, this determinant is nonzero, hence 
we obtain 0 E M, which is absurd. Hence A , K and L = K(A) as claimed. LI 

4. NUMERICAL RESULTS 

4.1. Two examples of Kummer theory. To illustrate the results of ?3, we give 
two examples coming from the numerical results given in ?4.2. The first example is 
that of a quadratic extension, for which it is not necessary to adjoin toots of unity. 
The second example is that of a cubic extension. 

In the first example, the base field K is defined by a root z of the polynomial 
X6 - X5 + 2X3 - 2X2 + 1. In this field, the prime number 41 splits as the product of 
three prime ideals of degree 1, and one prime ideal of degree 3. One of the prime 
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ideals of degree 1 is equal to 41 = 417ZK + (Z + 4)7ZK. The number field K has two 
real places v1 and v2. We take as modulus m = 9341vIv2 and H = Pm as congruence 
group. Using the methods of the preceding sections, we find that the ray class group 
is of order 2, thlat m is a conductor, hence that there exists a quadratic extension L 
of K ramified exactly at primes above m, hence totally complex and ramified only 
at the finite prime 41, and we compute its relative discriminant to be equal to 
1341 itself (in the present case, this is trivial). We now want a defining equation for 

L/K. 
Since L/K is quadratic, we have L = K(Xa) for some a E ZK. We first want 

this extension to be unramified outside 2 and 341. For this, using the principal 
ideal problem in K, we compute that P41 = aoK with a0 = z5 + 2Z2 - 2z. Since 

we want L/K to be ramified above q341 and no other prime ideals, from Theorem 

3.5 and the fact that K is principal, we see that we must choose a = a0u for u a 

unit of ZK. We now use the methods described before Proposition 3.6 to remove 

ramification above 2. We check that 2 is inert in K, hence a = vp (1 - (2) = 1. 

Thus Cap - 4ZK and we find that 

(ZK/4ZK)* -_ (Z/126Z) x (Z/2Z)5 

with generators -2z5 + z-2,-1 and -2z -+ 1 for 1 <i <4. 

We can choose as generators of units E0 = -1, E1 = z, 62 = Z3 + 1, 63 
z4 _ z3 + Z2 + z -1. The matrix H of discrete logarithms of the units is 

0 64 97 11 

1 0 1 1 

H=g g 1 1 0I, 
0 1 0 0 

0 O O 02 

while the column vector B of the discrete logarithm of a0 is equal to B = 
[68,0, 1, 1,0, O]t. By Gaussian elimination in Z/22, we see that the column vec- 

tor X - [0, 0,1, i]t is the unique solution modulo 2 to HX B (mod 2). Thus if 

we set 

a -ao062 1631--Z5 + 2z4 - 3Z2 + 33z 

the ramification conditions at all the finite primes will be satisfied. The only free- 

dom that we still have is to multiply by a square of a unit. In particular this does 
not change the signature, i.e. the ramification at infinity. One checks that indeed 
the real places are ramified, so L is a totally complex field. 

Thus L can be defined over K by the equation 

x2 _ (-Z5 + 2Z4 - 3Z2 + 3z) = 0 

To get the absolute defining equation of L over Q, we simply compute the resultant 

with respect to z of x2 - (-Z5 + 2Z4 - 3Z2 + 3z) with the defining polynomial 
z6 _ Z5 + 2Z3 - 2z2 + 1, and we obtain 

x12 _ x10 + 2x8+ 28x6-23X4 - 47X2 + 41 

as defining equation for our number field L. 
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Using polynomial reduction techniques (see [Coh] and [Co-Di]), we finally obtain 
the equation 

X12 - 2x" + 2x10 -x9 + 2x8 - 5X7 + 8x6 - 7X5 + 4x 4- 3X3 + 492 - 3x + 1 

given below. 
As a second example, we will take the case of a cubic extension. Here the base 

field K is defined by a root of the polynomial x6 - 2x5 + 3x4 + X2 + 3x + 1. This 
is a totally complex number field in which 2 is inert, and we choose as modulus 
m the prime ideal 2ZK alone, and H = Pm. Using the algorithms of ?3, we find 
that the ray class group is of order 3, hence that there exists a cubic extension L 
of K ramified only at 2, and we compute its relative discriminant ideal to be equal 
to 4ZK = 22ZK. We now want a defining equation for L/K. Since (3 f K, we 
must start by adjoining (3 to K. Thus we set M = K(W3) and N = L((3). A 
straightforward computation, followed by polynomial reduction, shows that M can 
be defined by a root of the polynomial 

P = X 12x-2x + x10 - 6x9 + 8x8 + 7x7 + 5x6 - 20X5 

- 2x4 + 3x3 + 892 + 3x + 1. 

Applying Proposition 3.6 to the extension N/I, we see that there exists:3 C M 
such that N = M(Ca) with a = 327(p3). In M, the prime 2 splits as the product 
of two prime ideals of degree 6, and since M is principal, they are generated by 
elements 30 and !13 = r(/3o) respectively which can be found using the principal ideal 
problem (note that we must choose 31 = 'r(30) here and not any other generator). 
Since we do not want any ramification outside 2, we must choose:3 equal to some 
product of powers of 3o and i31 such that the corresponding a = i32T(i3) satisfies 
the conditions of Theorem 3.5. It is easily checked that any choice of such a 3 will 
lead to the same field. Thus, we can choose 3 = 3o, and we will have the correct 
ramification outside from 3. 

To get rid of the ramification at 3, we look for a unit u such that a = aou is 
such that the congruence x a = (mod c3a) has a solution, with ao = /30). In 

our field M, we have 3ZZM = p2P/2 for prime ideals p and p' of degree 3, and hence 
(1 - (3)ZK = pp'. Thus a = 1, c = pp', and so we must solve the congruence 

x3--aou (mod j3j'3) 

We compute that 

(ZMI/( p33)) (Z/78Z)2 X (Z/3Z)l0 

and the corresponding SNF generators. Then, we can easily find a desired unit u, 
which will be defined up to cubes of units. 

However, to be able to get down to L, we will need to write u in the form 
U = 627(c) for some unit 6. To do this, we must do two things. First, we must find 
the action of r on the generators 6o, ... ,65 of the units of M. If we have kept track 
of how the field M = K((3) was constructed, this is trivially done. If not, we can 
apply one of the techniques for the field isomorphism problem to get explicitly the 
action of T. 

In any case, in this way, we obtain a 6 x 6 matrix U such that the columns of 
U give (multiplicatively) the components of T(6j) on the 6i. Let X be the column 
vector giving the components of our unit u on the e. Then (2X - UX)/3 will be 
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the components of the desired unit 6 on the ci. Note that this is a good check of 
the correctness of many computations, since these components must be integers. 

So finally, we choose:3 = ioc and a = /32T(/3). To find L, we apply Corollaries 
3.7 and 3.8 w1iich tell us that L = K(y) with y = 0 + 027/3, where 0 is a root 
of x3 - a = 0. It is now easy to find a relative equation for L/K, and hence an 
absolute equation, which we can then reduce. This is how the degree 18 example 
below was computed. 

We have not given explicit values for the different numbers which are involved 
(the units, oao, 3, etc...) because they are not canonical and depend on the way the 
algorithms are programmed, so the reader will certainly have different values than 
ours. Only the final reduced equation given below should be similar. 

4.2. Small discriminants. Using the algorithms described in this paper, we 
have computed a very large number of Abelian field extensions corresponding to 
congruence groups (i, H). Here, to compute such an extension means to compute 
its degree, signature, absolute or relative discriminant, but not a defining equation. 

We have proceeded as follows. Using tables of number fields K of degree less or 
equal to 7 available by anonymous ftp at the URL 

ftp://megrez.math.u-bordeaux.fr/pub/nuinberfields/ 

we have computed a list of moduli m of norm less than or equal to a certain bound. 
For each of these (K, m) we have obtained the ray class group Clm using the above 
algorithms, and then for each subgroup H of Clm, we have computed the signature 
and discriminant of the field L corresponding to the congruence group (m, H). The 
subgroups H can be obtained as explained in ?3.1. 

In the course of this computation, if we find that m is not the conductor of 
L (i.e. that hm,H hm/v,H for some v I m), then we stop the computation and 
go to the next. Otherwise, we keep only those L which give an absolute degree 
[L Q] = hm,H [K Q] less than or equal to 100. Finally, among those, we 
keep only those whose root discriminant is close compared to the GRH bounds (for 
example less than 1.2 times these bounds, see [Odl]). 

To run these programs, we have recomputed these GRH bounds so as to have a 
complete list for all signatures (R1, R2) and degree up to 100. These are available 
as a text file readable by GP/Pari at the same URL given above. 

Now the question arises of where to stop the search, both for the base fields, 
and, for a given base field, for the moduli. 

We use the following criterion. Let C be the maximum of the allowable root 
discriminants. For example, we can take C = 1.2B where B is the upper bound of 
the Odlyzko bounds for all degrees considered with a given signature. 

Set n = [K Q] and N [L Q]. Then by Theorem 3.3, we have 

dL/QI/hmH 
A 

IJ (p)lkem hd/KkH/hmnH Id/Q 

However, since m is assumed to be the conductor, we have hm/pkH < hm,H for 
k > 1. Call T (a) the smallest prime divisor of an integer a. Thus hm/pk,H < 
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hm,H/T(hm,H). From this and the above formula giving dL/Q, an immediate com- 
putation shows that 

A(m) < (I{d I(QI{ /N/ I d K/Q I1nn 
/ 

) 

- 

v 

with T T T(hm,H). Since we want the root discriminant to be less than C, and since 
T/(T - 1) is at most equal to 2, this implies 

KA(m) < C2n/IdK/Q12 

Now this is of course a very pessimistic upper bound, but it shows several things. 
First, the number of moduli to consider for a given base field is finite (assuming of 
course that we limit the degree and the discriminant). 

Second, the number of base fields to consider is also finite. More precisely, as 
JdKi increases, the number of possible moduli will decrease rather quickly, hence 
interesting fields will become rather rare. 

Furthermore, note that the result does not depend on hm,H and in particular 
not on the group H. For a given degree, the bound can be considerably improved 
(for example if the relative degree is odd, then T/(r - 1) < 3/2, which gives much 
better bounds). Furthermore, for a given modulus satisfying the bounds, usually 
only a small number of H will be able to satisfy the simple condition on the degree 
of the field. 

Of course all these observations are well known, but it is useful to put them on 
a quantitative footing. 

One can then ask if it is plausible to find completely all the Abelian extensions 
of number fields of degree less than or equal to 7 (we do not have reasonably large 
tables in higher degrees) satisfying the limitations of degree and discriminant given 
above (degree up to 100 and root discriminant up to 1.2 times the GRH bound). 
While not absolutely impossible, it seems like a huge amount of computation. 

To compare with previous results, we had at our disposal two sources. First the 
computations of [Mar] which were done 15 years ago in exactly the same spirit as 
this paper, but without the computer power. It is all the more remarkable that we 
have not been able to beat many of his records. 

Second the papers [Leu] and [Le-Ni] which deal with Euclidean fields, most of 
which are not obtained as Abelian extensions of subfields, and only in small degree 
(less than or equal to 11). 

We give below a list of 10 totally complex number fields obtained by the ray 
class field method. These fields all seem to be new and give the smallest known 
discriminant corresponding to their signature. In each case, the congruence group 
is trivial, and m,, is the set of all real places of the base field K (if this was not 
the case, either L would not be totally complex or m would not be its conductor). 
Thus we list the absolute degree [L Q], the base field K, the finite part mo of 
the modulus m as a product of prime ideals (written p to indicate a prime ideal 
of degree 1 above p and pp a prime ideal of degree 2 above p), the discriminant in 
factored form, the root discriminant, and the percentage above the Odlyzko bound 
that we have computed (note that the bounds that we use are slightly better than 
those used by [Mar], hence when comparing the papers one should compare the 
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root discriminant and not the percentage). 

N K MO dL/Q IdL/ Q 1/N GRH 

12 x6 - x5 + 2x3 - 2x2 + 1 341 372 41 . 8572 7.666 0.843% 
16 x4 _ x _ 1 93179337 172 . 372 . 2834 9.179 1.164% 
18 x6 - 2x5 + 3x4 + x2 + 3x + 1 (2) -212 . 236 . 1073 9.836 1.378% 
28 x4 + 2x2 - 2x + 1 '371 228 377 716 12.296 1.135% 
32 x4 - x3 + 2x +1 33P13 328 78 .1314 13.065 1.135% 
36 x4 - x3 + 31X2 - 24x + 252 (1) 318 40579 13.823 1.709% 
40 x2 + 2 T3(33T11 260 .320 . 1118 14.412 1.543% 
48 x4 - x3 + 4x2 + 3x + 9 P2P5 216 . 324 . 520 .1324 15.386 1.006% 
52 x4 - 2x3 + 21x2 - 20x + 68 (1) 278 100913 15.941 1.626% 
56 x4 -x3 - 2x + 8 3 249 . 342 . 24114 16.472 2.283% 

Using Kummer theory as explained in ?3, we have computed relative and absolute 
defining equations for all of these fields with the exception of the one in degree 52. 
The absolute equations of the first three are: 

-12 - 2x11 + 2x10 - x9 + 2x8 - 5X7 + 8x6 - 7x5 + 4x4 - 3X3 + 4x2 - 3x + 1, 

x16 + 2x14 _ x13 + 3x12 - 4x1 + 4X10 - 7x9 + 5x8 - 7X7 + 4X 
- 4x5 + 3x4 - x3 + 2x2 + 1, 

x8 - x17 + 3x16 + 2x15 _ x14 + 11x13 + 3x12 + 3x11 + 28x 10 

- 18x9 + 47x8 - 27X7 + 45x6 - 23X5 + 27x4 -11X3 + 9x2 - 2x + 1. 

In addition to these fields, we have also computed the first few thousand octic 
fields containing a quartic subfield in every possible signature. Finally, we have also 
found a large number of fields with small discriminants and of various degrees and 
signatures. These computations will be described in a forthcoming paper. Many 
of these fields have large discriminants compared to the Odlyzko bounds. This 
may be expected, since there is no reason, especially in large degrees, that small 
discriminants will correspond to Abelian extensions of subfields. On the contrary, 
it is plausible that the Galois group of such fields will tend to be the complete 
symmetric group Sr, which prevents the fields from having nontrivial subfields. 
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